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Abstract. We solve for the spectrum of quantum spin chains based on representations of the
Temperley–Lieb algebra associated with the quantum groupsUq (Xn) for Xn = A1, Bn, Cn

andDn. We employ a generalization of the coordinate Betheansatzdeveloped previously for
the deformed biquadratic spin-one chain. As expected, all of these models have equivalent
spectra, i.e. they differ only in the degeneracy of their eigenvalues. This is true for finite length
and open boundary conditions. For periodic boundary conditions the spectra of the lower-
dimensional representations are contained entirely in the higher-dimensional ones. The Bethe
states are highest-weight states of the quantum group, except in certain cases where the states
have energy zero.

1. Introduction

The recent interplay between the field of solvable two-dimensional lattice (or quantum spin-
chain) models and quantum groups has generated a lot of interesting results. One particular
way of building models which are quantum group invariant uses the Temperley–Lieb (TL)
algebra [1] satisfied by the Hamitonian densityUk:

U2
k =

√
QUk UkUk±1Uk = Uk

[Uk, Ul ] = 0 |k − l| > 2.
(1.1)

The Hamiltonian is now given by the following sum overN sites:

H(q) =
N∑

k=1

Uk. (1.2)

In a previous paper [2], we solved one particular example of a spin-one model, which
satisfies theTL algebra. The Hamiltonian density acts on nearest neighbours as a projector
on spin zero. The usual version of the coordinate Betheansatz(BA) [3, 4] does not work
here and a new one had to be developed for this case [2]. It turns out that a whole host
of quantum-group-invariant models are solvable by this technique, once they are recast in
a common group-theoretical language.

Therefore, in section 2, we describe the representations of theTL algebra, constructed
as projectors on the total spin zero of two neighbouring spins. In section 3, we introduce
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520 R Köberle and A Lima-Santos

the modified coordinateBA for periodic boundary conditions and show why the usualBA,
developed for the spin-1/2XXZ-model, does not work here. Section 3 contains the algebraic
details of the computation for periodic boundary conditions. We restrict ourselves to two-
body sectors, because all the interesting features occur here, as is to be expected for models
satisfying Yang–Baxter equations [5], as allTL models do. Of course, higher sectors have
to be investigated, in order to convince oneself that theBA really does work. But since this
is completely analogous to the spin-one model treated in [2] and can be appliedipsis literis
to the present situation, once all models are described in the same language, we omit these
details here. Although periodic boundary conditions simplify the application of theBA,
free boundary conditions are the natural ones for quantum-group-invariant models. Hence
in section 4, we spell out the differences in treating them. Section 5 is reserved for the
conclusions.

2. Representations of the Temperley–Lieb algebra as spin-zero projectors

Representations of theTL algebra, commuting with quantum groups, can be constructed
in the following way [6]. SupposeUq(Xn) is the universal enveloping algebra of a finite-
dimensional Lie algebraXn, equipped with the coproduct1: Uq → Uq ⊗ Uq [7]. If now
π : Uq → EndV3 is a finite-dimensional irreducible representation with highest weight3

and we assume that the decompositionV3 ⊗V3 is multiplicity free and includes one trivial
representation onV0, then the projectorP0 from V3 ⊗V3 ontoV0 is a representation of the
TL algebra. The deformation parameterq, which plays the role of a coupling constant in
the Hamiltonian, is related toQ via√

Q = TrV (q−2ρ) (2.1)

whereρ is half the sum of the positive roots.
By constructionP0 commutes with the quantum groupUq(Xn).
Since we are not going to use any group-theoretical machinery, we will just lift

the relevant formulas from Batchelor and Kuniba [8] in order to display explicitly the
Hamiltonians to be diagonalized.

We will consider the following specific cases:(V3, Uq(Xn)) = (V2s31, Uq(A1)) for spin
s, (V31, Uq(Bn)), (V31, Uq(Cn)) and(V31, Uq(Dn)). That is, we treat theq-deformations of
the spin-s representation of sl(2) and the vector representations of so(2n + 1), sp(2n) and
so(2n). V3 denotes theUq(Xn)-module with highest weight3. 31 is a highest weight of
Xn.

We introduce the following notation. Letei, i = 1, . . . , n, be orthonormal vectors, and
express the fundamental weight,5 = 31 + . . .+3n, the setA of weights, and the coupling
constant

√
Q ≡ −21 as

A1:A = {s(e1 − e2), (s − 1)(e1 − e2), . . . ,−s(e1 − e2)}
31 = (e1 − e2)/2 ρ = (e1 − e2)/2 J = {s, s − 1, . . . ,−s}
ε(µ) = (−1)µ̃

√
Q = [2s + 1]

(2.2a)

Bn (n > 2):A = {0, ±e1, . . . ,±en}

3i =
{

e1 + . . . + ei (1 6 i < n)

(e1 + . . . + en)/2 (i = n)

ρ = (n − 1/2)e1 + . . . + en/2 J = {0, ±1, . . . ,±n}
ε(µ) = (−1)µ̃

√
Q = [2n − 1][n + 1/2]/[n − 1/2]

(2.2b)
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Cn:A = {±e1, . . . ,±en}
3i = e1 + . . . + ei (1 6 i 6 n)

ρ = ne1 + . . . + en J = {±1, . . . ,±n}
ε(µ) = sign(µ)

√
Q = [n][2n + 2]/[n + 1]

(2.2c)

Dn:A = {±e1, . . . ,±en}

3i =


e1 + . . . + ei (1 6 i < n − 1)

(e1 + . . . + en−1 − en)/2 (i = n − 1)

(e1 + . . . + en−1 + en)/2 (i = n)

ρ = (n − 1)e1 + . . . + en−1 J = {0, ±1, . . . ,±n}√
Q = [2n − 2][n]/[n − 1] ε(µ) = 1.

(2.2d)

For µ ∈ J the symbolµ̃ is defined asµ̃ = µ + (1 ± 1)/4 for A1 with s ∈ Z + (1 ± 1)/4
and µ̃ = 0 with the exception of̃0 = 1 for Bn. Theq-number notation is

[x] ≡ (qx − q−x)/(q − q−1).

For Xn = Bn, Cn, Dn, we extend the subscript ofeµ to −n 6 µ 6 n by settinge−µ = −eµ

(and hencee0 = 0). Using the index setJ above, we can writeA = {µ(e1 − e2)} for A1

andA = {eµ|µ ∈ J )} for Bn, Cn, Dn.
Denoting the unit matrix having all elements zero, except at rowµ and columnν, by

Eµν ∈ EndV3, the projector can be written as

P0 = Q−1/2
∑

µ,ν∈J

ε(µ)ε(ν)q−〈eµ+eν ,ρ〉Eµν ⊗ E−µ−ν . (2.3)

In the following we will refer to all of the models generically ashigher-spinmodels for
simplicity, even when not talking aboutA1.

If we consider then a one-dimensional chain of lengthN with a ‘spin’ at each site, the
spin variables range over the set of weight vectorsvµ|µ ∈ J and our Hilbert space is an
N -fold tensor productV3 ⊗ . . . ⊗ V3. For A1, these are theq-analogues of the usual spin
states.

The Hamiltonian densities acting on two neighbouring sites are then given by

〈k, l|U |i, j〉 = ε(i)ε(k)q−〈ei+ek,ρ〉δi+j,0 δk+l,0. (2.4)

Having now built common ground for all of the models, whose salient feature is that
they are spin-zero projectors, we may now follow the steps of [2] to find their spectra.

3. The coordinate Betheansatz

All of the above Hamiltonians are U(1) invariant and we can classify their spectra according
to sectors. ForA1(s = 1) the commuting operator is the total spinSz = ∑N

k=1 Sz
k and we

set the conserved quantum numberr = N − Sz. In general it isr = N ∗ ω − Sz for A1 and
Bn andr = N ∗ (ω − 1/2) − Sz for Cn andDn. We setω = maxJ .

Therefore, there exists a reference state|�〉, satisfyingH |�〉 = E0 |�〉, with E0 = 0.
We take|�〉 to be |�〉 = ∏N

k |ω, k〉.
In every sectorr there are eigenstates degenerate with|�〉. They contain a set of

impurities. We call any state obtained bylowering some of the|ω, k〉s, such that the sum
of any two neighbouring spins is non-zero, an impurity. SinceH(q) is a projector on spin
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zero, all these states are annihilated byH(q). In particular, they do notmoveunder the
action ofH(q), which is the reason for their name.

We will now start to diagonalizeH(q) in every sector. Nothing interesting happens
in the sectorr < 2ω. The sectorr = 2ω is more interesting, although still trivial,
since it contains one free pseudoparticle. The main result of this paper is showing that
H(q) can be diagonalized in a convenient basis, constructed from products of single-
pseudoparticle wavefunctions. The energy eigenvalues will be parametrized as sums of
single-pseudoparticle contributions.

3.1. The sectorr = 2ω, containing one pseudoparticle

Starting withr = 2ω, we encounter the situation where the states|j, k〉 and |−j, k ± 1〉,
j 6= ω occur in neighbouring pairs. They move under the action ofH(q) and mix with states
containing one|−ω, k〉. Eigenstates are superpositions of|x[−ω]〉 = ( . . . ωωωω −ω

x
ωω . . .)

and |x [j,−j ]〉 = (. . . ωωω +j
x

− jωω . . .), i.e.

|2ω; . . .〉 =
∑

x

{
aω(x) |x [−ω]〉 +

∑
j

′
bj (x) |x [j,−j ]〉

}
(3.1)

where
∑′

j meansj ∈ J ∗ = J − {±ω} and the ellipses stand for parameters that the
eigenvector is going to depend on. WhenH(q) now acts on|2ω; . . .〉 it sees the reference
configuration, except in the vicinity ofx, and we obtain the eigenvalue equations

(E − q2〈εω,ρ〉 − q−2〈εω,ρ〉) aω(x)

= aω(x + 1) + aω(x − 1) +
∑

l

′
ε(ω)ε(l)q−〈eω+el ,ρ〉 bl(x − 1)

+
∑

l

′
ε(−ω)ε(l)q−〈e−ω+el ,ρ〉 bl(x) (3.2a)

Ebj (x) = ε(ω)ε(l)q−〈ej +eω,ρ〉 aω(x + 1) + ε(−ω)ε(l)q−〈ej −e−ω,ρ〉 aω(x)

+
∑

l

′
ε(j)ε(l)q−〈ej +el ,ρ〉bl(x) j ∈ J ∗. (3.2b)

Eliminating thebj s, we get an equation very similar to theXXZ-model:(
E −

∑
j∈J

q−2〈el ,ρ〉
)

aω(x) = aω(x + 1) + aω(x − 1). (3.3)

We will treat periodic boundary conditions maintaining translational invariance in the
following sections. They demand thataω(x + N) = aω(x) andbj (x + N) = bj (x). We
parametrize as follows:aω(x) = aωξx andbl(x) = blξ

x, l ∈ J ∗. Substituting this into (3.2)
we get two eigenstates and their energies:

aw = ε(−ω)q〈eω,ρ〉 + ε(ω)q−〈eω,ρ〉ξ−1 ≡ 0(ξ−1) (3.4)

×bl = ε(l)q−〈el ,,ρ〉 l ∈ J ∗ (3.5)

E1 =
∑

l

′
q−〈el ,ρ〉 + 0(ξ)0(ξ−1) =

∑
l∈J

q−2〈el ,ρ〉 + ξ + ξ−1

and a highly degenerate solution withE2 = 0, with the following constraint on the
parameters: ∑

l

′
ε(l)ε(ω)q−2〈el+ω,ρ〉bl + 0(ξ)ε(ω)q−〈eω,ρ〉aω = 0. (3.6)
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Here ξ = eiθ , θ being the momentum determined from the periodic condition to be:
θ = 2πl/N , with l an integer.

We describe this situation by saying that we have two types of pseudoparticle with
energiesE1 and E2. Whereas the pseudoparticle|2ω; θ〉2 is degenerate with|�〉, i.e. it
propagates with energyE2 = 0, the pseudoparticle|2ω; θ〉1 propagates with energy

E1 = −21 + 2 cosθ 21 ≡ −
∑
l∈J

q−2〈el ,ρ〉. (3.7)

As mentioned before, the energy eigenvalues are going to be parametrized as sums of
single-pseudoparticle energies. Thus we write

E =
p∑

n=1

εn

(∑
l

′
q−2〈el ,ρ〉 + 0(ξn)0(ξ−1

n )

)
(3.8)

whereεn depends on which pseudoparticle we use:εn = 1 for E = E1 andE = E2 = 0.

3.2. Two pseudoparticles and the XXZ Bethe ansatz

The next higher sector would be ther = 2ω + 1 sector, but let us treat ther = 4ω sector
first, since then we can compare it with the first non-trivial sector in theXXZ-model.

This sector contains states which each consist of two interacting pseudoparticles. We
seek these eigenstates in the form

|4ω; . . .〉ε1ε2
=

∑
x1<x2

{
aωω(x1, x2)|x1[−ω], x2[−ω]〉 +

∑
i

′
bωi(x1, x2)|x1[−ω], x2[i,−i]〉

+
∑

j

′
bjω(x1, x2)|x1[j,−j ], x2[−ω]〉 +

∑
i

′ ∑
j

′
bij (x1, x2)|x1[i,−i], x2[j,−j ]〉

}
.

(3.9)

Translational invariance now specifiesaωω(x1, x2) = ξx1aωω(n) and similarly for the other
wavefunctions, wheren = x2 − x1. Periodic boundary conditions require that

aωω(n) = ξnaωω(N − n)

biω(n) = ξnbωi(N − n) bij (n) = ξnbji(N − n)
(3.10)

whereξ = ξ1ξ2 (ξi = eiθi , i = 1, 2) and the total momentum isθ1 + θ2 = 2πl/N , with l an
integer.

According to equation (3.8), we will parametrize the energy as

E =
2∑

n=1

εn

[∑
l

′
q−2〈el ,ρ〉 + 0(ξn)0(ξ−1

n )

]
. (3.11)

Let us take the blockε1 = ε2 = 1 first. We try to build two-pseudoparticle eigenstates
out of translationally invariant products of one-pseudoparticle excitations atx1 andx2 with
weight functionsDi(x1, x2), i = 1, 2:

|4ω; θ1, θ2〉11 =
∑
x1<x2

{
D1(x1, x2)

[
0(ξ−1

1 )|x1[−ω]〉 +
∑

i

′
ε(i)q−〈ei ,ρ〉|x1[i,−i]〉

]

×
[
0(ξ−1

2 )|x2[−ω]〉 +
∑

j

′
ε(j)q−〈ej ,ρ〉|x2[j,−j ]〉

]
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+D2(x1, x2)

[
0(ξ−1

2 )|x1[−ω]〉 +
∑

j

′
ε(j)q−〈ej ,ρ〉|x1[j,−j ]〉

]

×
[
0(ξ−1

1 )|x2[−ω]〉 +
∑

i

′
ε(i)q−〈ei ,ρ〉|x2[i,−i]〉

]}
.

Comparing this with equation (3.9) and using translational invariance, implyingD2(n) =
ξnD1(N − n), we get

aωω(n) = 0(ξ−1
1 )0(ξ−1

2 )D(n)

bωi(n) = ε(i)q−〈ei ,ρ〉[0(ξ−1
1 )D1(n) + 0(ξ−1

2 )D2(n)]

biω(n) = ε(i)q−〈ei ,ρ〉[0(ξ−1
2 )D1(n) + 0(ξ−1

1 )D2(n)]

bij (n) = ε(i)ε(j)q−〈ei+ej ,ρ〉D(n) 3 6 n 6 N − 3

(3.12)

whereD(n) = D1(n) + D2(n).
Applying H(q) to the state of (3.9), we obtain a set of coupled equations for

aωω(n),bij (n). Following [9], we split the equations intofar equations, where excitations
do not meet, andnear equations, containing terms where they are neighbours. The far
equations are

(E − 2q−2〈eω,ρ〉 − 2q2〈eω,ρ〉)aωω(n)

= (1 + ξ)−1aωω(n + 1) + (1 + ξ)aωω(n − 1)

+
∑

l

′
ε(l)ε(ω)q−〈el+eω,ρ〉[ξ−1blω(n + 1) + bωl(n − 1)

]
+

∑
l

′
ε(l)ε(−ω)q−〈el−eω,ρ〉[blω(n) + bωl(n)] 2 6 n 6 N − 2 (3.13)

(E − q−2〈eω,ρ〉 − q2〈eω,ρ〉)bωj (n)

= ξ−1bωj (n + 1) + ξbωj (n − 1) + ε(j)ε(−ω)q−〈ej −eω,ρ〉aωω(n)

+ε(j)ε(ω)q−〈ej +eω,ρ〉aωω(n + 1)

+
∑

l

′
ε(l)q−〈el ,ρ〉[ε(ω)q−〈eω,ρ〉ξ−1blj (n + 1) + ε(−ω)q〈eω,ρ〉blj (n)

+ ε(j)q−〈ej ,ρ〉ξ−1bωl(n)
]

2 6 n 6 N − 2 (3.14)

(E − q−2〈eω,ρ〉 − q2〈eω,ρ〉)bjω(n)

= bjω(n − 1) + bωj (n + 1) + ε(j)ε(−ω)q−〈ej −eω,ρ〉aωω(n)

+ε(j)ε(ω)q−〈ej +eω,ρ〉ξaωω(n − 1)

+
∑

l

′
ε(l)q−〈el ,ρ〉[ε(ω)q−〈eω,ρ〉bjl(n − 1) + ε(−ω)q〈eω,ρ〉bjl(n)

+ε(j)q−〈ej ,ρ〉blω(n)
]

3 6 n 6 N − 3 (3.15)

Ebij (n) = ε(ω)q−〈eω,ρ〉[ε(i)q−〈ei ,ρ〉ξbωj (n − 1) + ε(j)q−〈ej ,ρ〉bωi(n + 1)
]

+ε(−ω)q〈eω,ρ〉[ε(i)q−〈ei ,ρ〉bωj (n) + ε(j)q−〈ej ,ρ〉bωi(n)
]

+
∑

l

′
ε(l)q−〈el ,ρ〉[ε(i)q−〈ei ,ρ〉blj (n)

+ε(j)q−〈ej ,ρ〉bil(n)
]

3 6 n 6 N − 3. (3.16)

We already know them to be satisfied, if we parametrizeD1(n) andD2(n) using plane
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waves:

D1(n) = ξn
2 (3.17)

D2(n) = ξN
2 ξn

1 . (3.18)

The real problem arises, of course, when pseudoparticles are neighbours, and so interact,
and we have no guarantee that the total energy is a sum of single-pseudoparticle energies.

Let us now have a very quick review of theXXZ-coordinateBA in order to be able
to comment on the features which are not going to survive generalizations to the present
models.

The equations in the sectorrXXZ = 2 are

(E − 2q
1
2 − 2q− 1

2 )a(x1, x2)

= a(x1 + 1, x2) + a(x1 − 1, x2) + a(x1, x2 + 1) + a(x1, x2 − 1) (3.19)

if x1 andx2 are not neighbours. In the case where they are, we get

(E − q
1
2 − q− 1

2 )a(x1, x1 + 1) = a(x1 − 1, x1 + 1) + a(x1, x1 + 2). (3.20)

One now supposes that the parametrization (3.9) fors = 1/2 solvesboth of the above
equations. In this case we are allowed to setx2 = x1 + 1 in equation (3.19) and subtract it
from equation (3.20), yielding the following consistency condition:

−(q
1
2 + q− 1

2 )a(x1, x1 + 1) = a(x1, x1) + a(x1 + 1, x1 + 1). (3.21)

This gives theBA equationfor the XXZ-model, determining the two-body phase shift:

ξN
2 = −1 + ξ + ξ2(q

1
2 + q− 1

2 )

1 + ξ + ξ1(q
1
2 + q− 1

2 )
. (3.22)

This type of procedure only works for the spin-1/2XXZ-model, for the following
reason. When the two pseudoparticles come together in a configuration like(. . .+++−−
+ + + . . .) and whenH is applied to the two down spins, it gives zero, since their totalSz

equals−1. But whenever two excitations approach each other and becoming neighbours,
and the Hamiltonian applied to them yields a non-vanishing result, then a representation
like equation (3.12) cannot solve both thefar and near equations. Yet this is exactly the
situation arising for higher spins. As we shall see, in this case, the representation (3.12)
has to modified [2], the two-body wavefunction developing a ‘discontinuity’ at minimum
separation. We call this thespin-zero rule.

Now we go back to our problem of solving the near equations. They are

(E − q−2〈eω,ρ〉 − q2〈eω,ρ〉)aωω(1)

= (1 + ξ)−1aωω(2) +
∑

l

′
ε(l)q−〈el ,ρ〉[ε(ω)q−〈eω,ρ〉 ξ−1blω(2)

+ε(−ω)q〈eω,ρ〉bωl(1)
]

(3.23a)

(E − q−2〈eω,ρ〉)bωj (1)

= ξ−1bωj (2) + ε(j)ε(−ω)q−〈ej −eω,ρ〉aωω(1) + ε(j)ε(ω)q−〈ej +eω,ρ〉aωω(2)

+
∑

l

′
ε(l)q−〈el ,ρ〉[ε(ω)q−〈eω,ρ〉ξ−1blj (2) + ε(j)q−〈ej ,ρ〉bωl(1)

]
(3.23b)

(E − q2〈eω,ρ〉)bjω(2)

= bωj (3) + ε(j)ε(−ω)q−〈ej −eω,ρ〉aωω(2) + ε(j)ε(ω)q−〈ej +eω,ρ〉ξaωω(1)
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+
∑

l

′
ε(l)q−〈el ,ρ〉[ε(−ω)q〈eω,ρ〉bjl(2) + ε(j)q−〈ej ,ρ〉blω(2)

]
(3.23c)

Ebij (2) = ε(ω)q−〈eω,ρ〉[ε(i)q−〈ei ,ρ〉ξbωj (1) + ε(j)q−〈ej ,ρ〉biω(3)
]

+ε(−ω)q〈eω,ρ〉[ε(i)q−〈ei ,ρ〉bωj (2) + ε(j)q−〈ej ,ρ〉biω(2)
]

+
∑

l

′
ε(l)q−〈el ,ρ〉[ε(i)q−〈ei ,ρ〉blj (2)

+ε(j)q−〈ej ,ρ〉bil(2)
]

i 6= j (3.23d)

Ebii(2) = ε(i)ε(ω)q−〈ei+eω,ρ〉[ξbωi(1) + biω(3)] + ε(i)ε(−ω)q−〈ei−eω,ρ〉[bωi(2) + biω(2)]

+
∑

l

′
ε(l)q−〈ei+el ,ρ〉[bli(2) + bil(2)]

+
∑

l

′
ε(−i)ε(l)q−〈el−ei ,ρ〉B(l)

i . (3.23e)

Here some new states are appearing. TheB(l)
i are the wavefunctions of the states of the

type (. . . ωωi
x

l − l ωω . . .), l 6= i. Applying H(q) to them we obtain the system

(E − q2〈el ,ρ〉)B(l)
i =

∑
j∈J ∗,j 6=−i

ε(l)ε(j)q 〈el+ej ,ρ〉B(l)
i + ε(l)ε(−i)q−〈el−ei ,ρ〉bii(2) (3.24)

yielding

B(l)
i =

[
ε(l)ε(−i)q〈el−ei ,ρ〉

/(
E −

∑
j∈J,j 6=−i

q−2〈ej ,ρ〉
)]

bii(2). (3.25)

Eliminating B(l)
i from equation (3.23), we get

E(E + 21)

E + 21 + q〈ei ,ρ〉 bii(2)

= ε(i)ε(ω)q−〈ei+eω,ρ〉[ξbωi(1) + biω(3)] + ε(i)ε(−ω)q−〈ei−eω,ρ〉

×[bωi(2) + biω(2)] +
∑

l

′
ε(l)ε(i)q−〈ei+el ,ρ〉[bli(2) + bil(2)]. (3.26)

In order to solve these equations, we follow [2] and now leave the value of the wavefunctions
for nearest separation as arbitrary parameters:

aωω(1) = 0(ξ)0(ξ−1)D(1) + Faωω
(1)

bωi(1) = ε(i)q−〈ei ,ρ〉[0(ξ−1)D1(1) + 0(ξ−1)D2(1)] + Fbωi
(1)

bωi(2) = ε(i)q−〈ei ,ρ〉[0(ξ−1)D1(2) + 0(ξ−1)D2(2)] + Fbiω
(2)

bij (2) = ε(i)ε(j)q−〈ei+ej ρ〉D(2) + Fbij
(2).

(3.27)

In order for this modification to leave the far equations still satisfied, the following
conditions have to hold:

(1 + ξ−1)Faωω
(1) +

∑
l

′
ε(l)ε(ω)q−〈el+eω,ρ〉Fbωl

(1) +
∑

l

′
ε(l)ε(−ω)q−〈el−eω,ρ〉Fblω

(2) = 0

ξFbωj
(1) +

∑
l

′
ε(l)ε(−ω)q−〈el−eω,ρ〉Fblj

(2) = 0

Fbjω
(2) +

∑
l

′
ε(l)ε(ω)q−〈el+eω,ρ〉Fbjl

(2) = 0.

(3.28)
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Now using equations (3.12) and equation (3.27) in equation (3.26), we get the following
equation forFbii

(2):

Fbii
(2) = D(2)

E + 21
i ∈ J ∗. (3.29)

Doing the same with equation (3.23), we get

Fbij
(2) = 0 i 6= j. (3.30)

These results forFbii
(2), Fbij

(2) are reasonable. In the first case the colliding excitations
satisfy thezero-spin ruleand we get a non-zero result, whereas in the second case the rule
is not satisfied and we get zero. Using this in equation (3.28), we obtain for the remaining
constants

Faωω
(1) = −(q−2〈eω,ρ〉 + q2〈eω,ρ〉 + 21) Fbii

(2)

Fbωj
(1) = −ε(j)ε(−ω)q−〈ej −eω,ρ〉 Fbii

(2)

Fbjω
(2) = −ε(j)ε(ω)q−〈ej +eω,ρ〉 Fbii

(2) j ∈ J ∗.

(3.31)

Substituting finally the complete parametrization into the remaining near equations, we get
the following Betheansatzequation:

D(2)

E + 21
= ξ

1 + ξ
D(1) (3.32)

which can also be rewritten as

ξN
2 = −ξ2[(1 + ξ−1)ξ2 − 21 − E]

ξ1[(1 + ξ−1)ξ1 − 21 − E]
. (3.33)

Using the explicit form of the energy, the set of equations determining the spectrum are

ξN
2 = −1 + ξξ2 − 21ξ2

1 + ξξ1 − 21ξ1
ξN = 1. (3.34)

Notice that this equation is independent ofn or any other representation-specific
quantities. All the models considered therefore show an equivalent spectrum, when para-
metrized in terms of1.

In particular, this is the same consistency condition as one finds for theXXZ-model,
showing that forε1 = ε2 = 1—even for periodic boundary conditions—the spectra of all
our models are equivalent to the spectrum of theXXZ-model, if expressed in terms of1.

We will not discuss the other two blocks (ε1 = 1, ε2 = 0), andε1 = ε2 = 0, since the
calculations are analogous to the ones presented above. For details the reader might consult
[2]. In any case, the first of the two cases does not occur for the more interesting situation
of free boundary conditions. It is too asymmetric to satisfy free boundary conditions. This
is why for free boundary conditions the spectrum of each of our models is equivalent to the
XXZ-spectrum. The blockε1 = ε2 = 0 hasE = 0 and theBA equation reduces toξN = 1,
being highly degenerate. The eigenvalueE = 0 also occurs in theXXZ-spectrum, albeit
with different degeneracy.

3.3. One pseudoparticle and impurities

Since the set-up with pseudoparticles and impurities is a little different from the case of
two pseudoparticles, we will dedicate some space to it.
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The eigenstates sought for will be like

|2ω + 1; . . .〉 =
∑
x1<x2

{
aωk(x1, x2) |x1[−ω], x2[k]〉 +

∑
i

′
bjk(x1, x2) |x1[j,−j ], x2[k]〉

+akω(x1, x2) |x1[−k], x2[−ω]〉 +
∑

j

′
bkj (x1, x2) |x1[k], x2[j,−j ]〉

}
. (3.35)

Translational invariance and periodic boundary conditions impose

aωk(x1, x2) = ξx1aωk(n) bjk(x1, x2) = ξx1bjk(n) (3.36)

aωk(n) = ξnakω(N − n) bjk(n) = ξnbkj (N − n) (3.37)

wheren = x2 − x1, ξ = ξ1ξ2 (ξi = eiθi , i = 1, 2) and the total momentum isθ1 + θ2

= 2πl/N , with l an integer.
Let us take the blockε1 = 1, building eigenstates out of translationally invariant

products of one-pseudoparticle excitations atx1 and an impurity atx2 with weight functions
Di(x1, x2), i = 1, 2 as in the previous section. This yields the parametrizations

aωk(n) = 0(ξ−1
1 )D1(n) akω(n) = 0(ξ−1

1 )D2(n)

bjk(n) = ε(j)q−〈ej ,ρ〉D1(n) bkj (n) = ε(j)q−〈ej ,ρ〉D2(n).
(3.38)

The far equations for the impurity on the right are now

(E − 2q−2〈eω,ρ〉 − 2q2〈eω,ρ〉)aωk(x1, x2)

= aωk(x1 − 1, x2) + aωk(x1 + 1, x2) +
∑

l

′
ε(l)ε(ω)q−〈el+eω,ρ〉blk(x1 − 1, x2)

+
∑

l

′
ε(l)ε(−ω)q−〈el−eω,ρ〉blk(x1, x2) x1 + 2 6 x2 6 N − x1 − 2

(3.39)

Ebjk(x1, x2) = ε(j)ε(ω)q−〈ej +eω,ρ〉aωk(x1 + 1, x2) + ε(j)ε(−ω)q−〈ej −ω,ρ〉aωk(x1, x2)

+
∑

l

′
ε(j)ε(l)q−〈ej +el ,ρ〉blk(x1, x2) x1 + 3 6 x2 6 N − x1 − 3

(3.40)

(and analogous equations for the impurity on the left). Eliminating theb-functions, we get(
E −

∑
l∈J

q−2〈el ,ρ〉
)

aωk(x1, x2) = aωk(x1 − 1, x2) + aωk(x1 + 1, x2) (3.41a)(
E −

∑
l∈J

q−2〈el ,ρ〉
)

akω(x1, x2)

= akω(x1, x2 − 1) + akω(x1, x2 + 1) x1 + 3 6 x2 6 N − x1 − 3. (3.41b)

We know them to be satisfied, if the energy is given by equation (3.11). The near
equations require of course the by now customary treatment of modifying theansatzof the
wavefunctions at small separations.

The near equations for the impurity at the right are

(E − 2q−2〈eω,ρ〉)aωk(x, x + 1)

= aωk(x − 1, x + 1) +
∑

l

′
ε(l)ε(ω)q−〈el+eω,ρ〉blk(x − 1, x + 1) (3.42)
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Ebjk(x, x + 2)

= ε(j)ε(ω)q−〈ej +eω,ρ〉aωk(x + 1, x + 2) + ε(j)ε(−ω)q−〈ej −ω,ρ〉aωk(x, x + 2)

+
∑

l

′
ε(j)ε(l)q−〈ej +el ,ρ〉blk(x, x + 2) (3.43)

Ebjj (x, x + 2)

= ε(j)ε(ω)q−〈ej +eω,ρ〉aωj (x + 1, x + 2) + ε(j)ε(−ω)q−〈ej −ω,ρ〉aωj (x, x + 2)

+ε(−j)ε(−ω)q〈ej +eω,ρ〉ajω(x, x + 1) + ε(−j)ε(ω)q〈ej −ω,ρ〉ajω(x, x + 2)

+
∑

l

′
ε(j)ε(l)q−〈ej +el ,ρ〉blj (x, x + 2)

+
∑

l

′
ε(−j)ε(l)q〈ej −el ,ρ〉bjl(x, x + 1). (3.44)

They can be solved modifying the parametrization for nearest neighbours in the usual
way. The result is

aωk(1) = 0(ξ−1)ξ2 + Fakω
bjk(2) = ε(j)q−〈ej ,ρ〉ξ2

2 + Fbjk
(3.45)

akω(1) = 0(ξ−1)ξN
2 ξ1 + Fakω

bkj (1) = ε(j)q−〈ej ,ρ〉ξN
2 ξ1 + Fbkj

(3.46)

where
Fakω

= −ε(ω)q−〈eω,ρ〉ξN
2 Fbkj

= ε(k)q−〈ek,ρ〉ξN
2 δk+j,0

Faωk
= −ε(−ω)q〈eω,ρ〉ξ2 Fbjk

= ε(−k)q〈ek,ρ〉ξξ2δk−j,0

(3.47)

with ξN = 1, ξN−2
1 ξ2 = 1, from periodic boundary conditions.

4. Free boundary conditions

It is for free boundary conditions that the HamiltonianH(q) commutes with the quantum
groupUq(Xn). As expected, the Bethe states are the highest-weight states ofUq(Xn), except
in the case of certainE = 0 states. This can easily be shown, applying the quantum group
spin-raising operator to these states, following the analogous steps of [2].

The extension of theBA procedure from the periodic boundary conditions to the free
case again follows exactly the lines of [2]. We will therefore only state the results for the
sector with two pseudoparticles.

Take the blockε1 = ε2 = 1. The nearest-approach constants to be added to the now
standing waves are the same as in the periodic case, namely equations (3.30) and (3.31)—
only Fbii

(2) is different [2]. TheBA equations are now

ξ2N
a =

r∏
b=1,b 6=a

b(ξ−1
a , ξb)

b(ξa, ξb)
a = 1, 2 (4.1)

where

b(ξa, ξb) = ξb

ξa

[ξb + ξ−1
a − 21 − Eab][ξ−1

b + ξ−1
a − 21 − Eab] (4.2)

and

Eab = 2
∑

l

′
q−2〈el ,ρ〉 + 0(ξa)0(ξ−1

a ) + 0(ξb)0(ξ−1
b ). (4.3)

The only other block isε1 = ε2 = 0, E = 0. It is again highly degenerate, with
Fbii

(2), ξ1, ξ2 as free parameters†.

† Actually there is one more free parameter, calledα5 in [2].
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Thus all models havespectra equivalent to the one of theXXZ-model.

5. Conclusion

We obtained the spectra of quantum spin-chain models, arising as representations of the
Temperley–Lieb algebra associated with quantum groups. The tool is a modified version
of the coordinate Betheansatz, since the simpler algebraic Betheansatzis not immediately
available for these models. We find that all models have equivalent spectra, i.e. they
differ at most in their degeneracies for free boundary conditions, and for periodic boundary
conditions the spectra of the lower-dimensional representations are entirely contained in the
higher-dimensional ones.

The energy eigenvalues are given by

E =
p∑

n=1

εn(−21 + 0(ξn)0(ξ−1
n )) (5.1)

where−21 = ∑′
l q

−〈el ,ρ〉, and the rapiditiesξn are solutions of theBA equations.
In the sectorr we may havep pseudoparticles andNω∗−1, Nω∗−2, · · · , N−ω∗+1 impurities

of the type(ω∗ − 1), (ω∗ − 2), · · · , (−ω∗ + 1), respectively, such that

Nω∗−1 + 2Nω∗−2 + · · · + (2ω∗ − 1)N−ω∗+1 = r − 2ω∗p. (5.2)

Hereω∗ = ω for A1 andBn andω∗ = ω − 1/2 for Cn andDn.
For example, for periodic boundary conditions†, the total rapidityξ = ξ1ξ2 . . . ξpξimp,

ξimp = ξp+1ξp+2 . . . ξr−σ obeysξN = 1, and theBA equations forE 6= 0 are

ξN
a ξ2

imp =
r−σ∏

b=1,b 6=a

−ξa

ξb

(1 + (ξaξb)
−1ξa − εab)

(1 + (ξaξb)−1ξb − εab)
(5.3)

whereεab = Eab + 21 andσ can be fixed for each allowed case from the equations (5.2).
Although we considered only the lowest non-trivial sectors in this paper, our version

of the BA works in general. This can be shown, repeating step by step the reasoning of
[2], where the analogous result for the spin-one case was given. We refrain therefore from
burdening the reader with this material.

The Bethe eigenstates are the highest-weight states of the quantum group—except where
they are states with energyE = 0, for which this is not always the case. Again this result
can be proven very simply following [2].

It is clear from our computations that all of these results are based entirely on the
Temperley–Lieb algebraic properties of our models. From them it follows that the results
satisfy the Yang–Baxter [5] equations. Therefore it should not be necessary to check the
validity of the BA for sectors higher than two-body ones. Also, the equivalence of the
spectra should be a consequence of just Temperley–Lieb algebraic properties. As far as we
know, these statements are unproven, using only Temperley–Lieb algebraic statements as
input.
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